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Abstract 

Intermittent rivers and ephemeral streams (IRES) account for more than half of the world’s river 
networks and are considered to increase under climate change and growing anthropogenic water use. 
However, the hydrological mechanisms that control the spatio-temporal flow patterns in IRES and their 
effects on the expansion and contraction of stream segments are not fully understood. Aiming to 
overcome this problem, DRYvER developed a hybrid hydrological modeling approach to simulate daily 
flow conditions and provide flow intermittence indicators in 6 European Drying River Networks (DRNs). 

The JAMS/J2000 process-based hydrological model forced with the ERA5-land reanalysis is used to 
simulate daily discharges at high spatial resolution, which includes the scale of small reaches (about 50 
ha catchment size). As the JAMS/J2000 does not allow to reproduce accurately the periods with no 
flow, a Random Forest classification model (RF) was used to predict the flow condition (dry or flowing) 
at the reach scale in the DRNs, using hydrological variables simulated with JAMS/J2000 as explanatory 
variables, and observed flow intermittence data (e.g. data from field measurements, citizens science 
application) to train the RF model. 

Results show that the hybrid hydrological modeling approach (JAMS/J2000 and RF) enables to 
reproduce accurately the spatio-temporal patterns of flow intermittence in the Albarine (France), 
Bukkosdi (Hungary), Lepsämänjoki (Finland), and Velička (Czech Republic) DRNs. Additional observed 
flow intermittence data would be needed in the Genal (Spain) DRN in order to improve the simulation 
results. The prediction of flow conditions could not be produced for the Butižnica (Croatia) DRN due 
to a lack of observed flow intermittence data. 
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1 Introduction 

1.1 Background 

Currently, more than half of the world’s river channels are considered as intermittent rivers and 

ephemeral streams (IRES), that recurrently cease flow and/or dry (Datry et al. 2021; Messager et al. 

2021); Figure 1.1). Even though IRES can occur naturally across every river network, they are expanding 

in time and space, mainly due to human water use and climate change. Our limited knowledge about 

the expansion and contraction of river networks as well as hydrological process interactions restrict 

model implementations as well as confines future projections (van Meerveld et al. 2019). 

DRYvER’s multi model approach aims to simulate hydrological, biological, and biogeochemical 

processes to assess biodiversity, ecosystem functions, and services. These predictions and future 

projections are therefore constrained by the performance of the hydrological models at the catchment 

scale.  

 
Figure 1.1: Probability of flow intermittence at the global scale (Messager et al. 2021)  

1.2 Objectives 

The objective of Task 1.1 is to provide flow intermittence patterns for the six EU focal Drying River 

Networks (DRNs), for present conditions and future climate scenarios, taking into account human 

influences (e.g. abstraction, reservoirs) on hydrological process dynamics of the DRNs. The aim is to 

implement process-based spatially distributed hydrological models – based on the JAMS/J2000 

modeling system at daily time-steps (ST 1.1.1). Besides, to use observed data of the states of flow 

within the focal DRNs to validate the models and, if necessary, adapt the modeling strategy to predict 

flow intermittence. The developed models for the focal DRNs in Hungary, Spain, Croatia, France, Czech 

Republic, and Finland can then be used to calculate indicators of flow intermittence, such as the 

presence/absence and frequency of drying in recent decades and under projected climate scenarios in 

the future (D1.1).  
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This report aims to describe the model setups, calibration and validation as well as to show results and 

updated datasets on flow intermittence at present time.   

2 Methods   

Within WP1 task 1.1, INRAE and FSU jointly developed process-based spatially distributed hydrological 

models for the six European focal DRNs, which are based on the JAMS/J2000 modeling 

system/hydrological model, running at a daily time-step (ST 1.1.1). For the development of the 

hydrological models, FSU took charge of three European DRNs, located in Spain, Czech Republic, and 

Croatia and INRAE the DRNs located in France, Hungary, and Finland, but worked constantly together 

to develop a joint methodology and harmonized datasets. The first task was the collection, analysis, 

and selection of required data to set up the physical-based models. In the second step, these models 

were calibrated and validated using long-term (20 years) streamflow data. To capture the spatio-

temporal dynamics of observed flow states, the physically-based hydrological model was coupled with 

a stochastic model, to use the model outputs and physical information to train a Machine Learning 

(ML), Random Forest (RF) model with the flow state observations. Following, these steps are described 

in detail.  

2.1 Spatial and temporal data acquisition and analysis for model 

development 

Harmonized databases were established containing hydro-climatic time-series of the last 20 years and 

spatial topographical, pedo-lithological and land use land cover (LULC) data.  

2.1.1 Temporal data (hydroclimatic time series) 

The temporal data used for the modeling needed to fulfill certain requirements. The most important 

one was to be up-to-date to integrate the latest observations from the field teams. Usually, locally 

observed data is used to ensure the most precise data basis. However, for meteorological data, it was 

not possible for all DRNs to regularly update the data every few months. For that reason, reanalysis 

and modeled meteorological data products were tested, selected, and used to force the hydrological 

models. These products were then compared among each other and to the measured data (Mimeau 

et al. 2022).  

Therefore, at first, a database was established, which contains available measured discharge and 

meteorological parameters. It is hosted by FSU and available online (http://leutra.geogr.uni-

jena.de/DRYvER). Currently, 371 meteorological and gauging stations are available, which comprise 

1030 time series (Figure 2.1) and can be used by the project consortium. Metadata and references for 

all measured discharge used in this study can be found in this dataset. 

Another requirement for the modeled and reanalysis data was that the available meteorological 

variables should also contain the same variables and formats that are available in the climate model 

data to guarantee a seamless alignment. This especially addresses the calculation of 

evapotranspiration. The final data fulfilling these requirements and thus, selected to force the models 

were the ERA5-Land data (Muñoz-Sabater et al. 2021). The following hourly ERA5-Land climate 

variables were used to compute the reference evapotranspiration using the Penman-Monteith 

equation (Allen et al. 1998): 2m air temperature (°C), 2m dew point temperature (°C), 2m relative 

humidity (%), 10m u and v wind speed components (m/s, incoming solar radiation (W/m²), incoming 

thermal radiation (W/m²), and surface pressure (Pa). Hourly ERA5-Land precipitation, air temperature 

http://leutra.geogr.uni-jena.de/DRYvER
http://leutra.geogr.uni-jena.de/DRYvER
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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and computed reference evapotranspiration were then aggregated at daily time step to be used as 

climate forcing data in the hydrological model. 

Additionally, daily discharge data for the six DRNs was required for at least 20 years to calibrate and 

validate the models at as many gauging stations as possible and at least at the outlet of the small and 

large catchment. The reason behind, was to capture the magnitude and frequency of the hydrological 

process dynamics in time and space. For example, to cover the temporal variability and extreme 

events, but also changes in the transition time from upstream to downstream parts in the catchment. 

The available and used discharge stations, which were fulfilling these requirements are listed in Table 

2.1. 

Table 2.1: Available discharge data     

DRN gauging stations time series (average 
length in years) 

stations with 
inhomogeneity 

used 

Guadiaro/Genal 4 20 2 3 

Krka/Butižnica 3 20 1 2 

Morava/Velička 9 41 0 9 

Fekete/Bukkosdi 22 25 5 17 

Ain/Albarine 25 49 2 23 

Vantaanjoki/Lepsämänjoki 11 47 4 7 

 
Figure 2.1: DRYvER River Basin Information System  

Besides, observed snow data was used to calibrate and validate JAMS/J2000’s performance of 

modeling snow processes. For that purpose, the catchment’s fractional snow cover area (fSCA) was 

used from the MOD10A2 dataset (Hall and Riggs 2016; section 2.3.1)  

2.1.2 Spatial data (as basis for the modeling entities) 

The spatial data is key to delineate the modeling entities and deriving bio-physical information for the 

mathematical calculation of hydrological processes.  

https://nsidc.org/data/mod10a2/versions/61
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For the delineation of modeling entities, the concept of Hydrological Response Units (HRUs) and 

stream segments (reaches) as well as topological routing according to Flügel (1996) and Pfennig et al. 

(2009) was used (Figure 2.2). The topological routing scheme allows the calculation of water transfer 

from one HRU to another until the reach and further along the reaches until the basin outlet (Pfennig 

et al. 2009), enabling to simulate different flow conditions at the reach level. For DRYvER, special 

attention was drawn to the replication of the river networks to address the replication of both, i) the 

original river network with the sampling points of the DRN teams and ii) a high spatial resolution to 

assure that models are able to simulate hydrological dynamics at the resolution required by the other 

work packages. For that purpose, reference river networks provided by the DRN leaders were used to 

validate the synthetic river networks, which are constrained by the DEMs Table 2.2 used for each DRN.   

 
Figure 2.2:  Harmonized hydrological data used to generate the modeling entities (Hydrological Response Units; HRUs and 

reaches)  

Besides, bio-physical information of these spatial classes was used to calculate plant-based processes, 

such as evapotranspiration, soil water processes, e.g. infiltration and groundwater processes, such as 

groundwater recharge and based on these processes the discharge. Besides, topographic information, 

such as slope and aspect are needed to replicate the flow topology (section 2.2). Additionally, these 

classes of e.g. a specific soil type or land use class are attributed with physical (e.g. field capacity) or 

biological (e.g. root depth) information, which is needed to model the associated processes. If 

available, European data products were used to establish a common spatial database and select 

classes, which are hydrologically relevant to assure transparency. The following data sources were 

used: 

● Topography: Digital Elevation Models (DEMs) were selected based on their availability and 
quality in representing the river network and sampling reaches of WP2 provided by the DRN 
team leaders. Besides, the area of certain catchments restricted the use of a high-resolution 
DEM due to calculation problems. This was for example the case for the Morava DRN, which 
covers the largest area among the six DRNs (A ≈ 9,400 km²). The DEMs used for the specific 
DRNs are listed in Table 2.2. 

● Soil: Soil classes were adapted using the European Soil Database v2.0 (European Commission; 

(Panagos et al. 2012). Physical parameters were also used from the European Soil Database 

v2.0 (field capacity, saturated water content, depth to rock). In Spain, texture and bulk density 
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data was used from soil profiles (Llorente et al. 2018) for the calculation of parameters using 

pedotransfer functions (Ad-hoc-AG Boden 2005; FAO 2006; Table 2.2). 

● LULC: Corine Land Cover (CLC) 2012, Version 2020_20u1 Level 3 (44 classes) was used 

(Copernicus Land Monitoring Service 2020) to establish the LULC classes. Parameters, such as 

albedo, crop coefficients, LAI, root depth, and impervious fraction area, were adapted to local 

conditions from different sources (Allen et al. 1998; Krause 2001; Ludwig and Bremicker 2006; 

Neitsch et al. 2011; Faroux et al. 2013; Table 2.2). 

● Hydrogeology: IHME1500 – International Hydrogeological Map of Europe (aquifer and 

lithology layers) was used to establish the classes for all DRNs (BGR 2013). Besides, physical 

parameters were used from the literature (Andreas and Duscher 2019) to parameterize the 

models to calculate groundwater flow for the Krka (Croatia), Guadiaro (Spain), and Morava 

(Czech Republic) DRNs (Table 2.2). 

Table 2.2: References for the digital elevation models used to generate Hydrological Response Units (HRUs) and topological 
routing of water pathways as well as pre-determined spatially distributed parameter values 

 
Type 

 
Parameter 

Country DRN 

France, Hungary Finland Croatia Czech Republic Spain 

Topography 
[resolution] 

Slope EU-DEM v1.1 
(Copernicus Land 
Monitoring 
Service 2016)  
[25 m] 

10 m DEM 
Finland 
(National 
Land Survey 
of Finland) 
[10 m] 

EU-DEM v1.1 
(Copernicus Land 
Monitoring 
Service 2016) 
[25 m] 

Shuttle Radar 
Topography 
(SRTM30; U.S. 
Geological 
Survey 2015)  
[30 m] 

MDE de 
Andalucía (Portal 
Ambiental de 
Andalucía. 2010) 
[10 m] Aspect 

Soil 

Field 
capacity 

European Soil Database v2.0 (Panagos et al. 2012) 

(Air capacity = field capacity - saturated water content) 

Llorente et al. 
2018, Boden 
2005; FAO 2006 

Air capacity 

Soil depth 

LULC 

Albedo (Ludwig and Bremicker 2006) 

Monthly 
crop 
coefficient 

FAO (Allen et al. 1998) 

Monthly 
Leaf area 
index 

ECOCLIMAP II (Faroux et al. 2013) 

Root depth (Ludwig and Bremicker 2006) 

Impervious-
ness 

Percentage of sealed area within each LULC class Corine Land Cover (CLC) 2012, Version 
2020_20u1 Level 3 (Copernicus Land Monitoring Service 2020) 

Hydro-
geology 

Storage 
capacity 

calibrated BGR 2013; Andreas and Duscher 2019 

Storage or 
recession 
coefficient  

calibrated 

 

2.1.3 Flow intermittence data 

In order to validate the model’s ability of simulating flow intermittence at the reach level multiple data 

sources of flow observations were used, which stem from the: 
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● DRYRivERS smartphone application developed in DRYvER 

(https://www.dryver.eu/citizen-science/introduction; all DRNs) 

● crowdwater smartphone application (https://crowdwater.ch/en/data/; France, Hungary, 

Finland)  

● ONDE network (Observatoire National des Etiages, https://onde.eaufrance.fr; France) 

● photo traps installed in DRYvER (France, Finland)  

● temperature and conductivity sensors installed in DRYvER (Czech Republic) 

● water level and discharge sensors installed in DRYvER (Czech Republic) 

● discharge daily time series from gauging stations (all DRNs) 

These data sources were available either as disconnected points in time and space, recurrent 

observations at the sampling sites, or time series of daily data over periods ranging from a few months 

to several years. 

For this deliverable flow intermittence data until 2021-30-09 was used (Figure 2.3 and Table 2.3). Until 

the end of the project, the datasets of flow intermittence will be updated to consider new observations 

(e.g. observations for the year 2022, photo traps data in the Bukkosdi catchment, water temperature 

data in the Albarine, Bukkosdi, Genal, Lepsämänjoki, and Velička DRNs).   

  

https://www.dryver.eu/citizen-science/introduction
https://crowdwater.ch/en/data/
https://onde.eaufrance.fr/
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Table 2.3: Flow observations in the studied DRNs (from 2018-01-01 to 2021-12-31) 

Catchment Dataset Number of 
observations 

Number of sites Length of river 
network with 
observed data [%] 

Albarine DryRivers 120 57 12.6 

CrowdWater 215 32 8.2 

Photo traps 5093 10 2.5 

ONDE 54 3 0.7 

Gauging stations 1462 2 0.5 

Bukkosdi DryRivers 183 37 11.2 

CrowdWater 33 26 7.8 

Gauging stations 2500 6 0.5 

Lepsämänjoki DryRivers 24 17 5 

CrowdWater 4 4 2.2 

Photo traps 816 8 2.8 

Gauging stations 877 1 0.1 

Genal DryRivers 72 33 12.2 

Gauging stations 1387 1 0.3 

Butižnica DryRivers 21 21 4.3 

Gauging stations 1096 1 0.05 

Velička DryRivers 351 20 62.5 

Gauging stations 1460 2 1.7 

Water level and 
discharge loggers 5117 7 8.3 

Temperature/ 
Conductivity loggers 5403 20 23 
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Figure 2.3: Location of flow observations in the a) Albarine (France), b) Bukkosdi (Hungary), c) Butižnica (Croatia), d) Genal 
(Spain), e) Lepsämänjoki (Finland), and f) Velička DRNs. Different sources of data are reported for each catchment: 
crowdsourced observations (from the CrowdWater app in black and from the DryRivers app in white), hydrological stations 
(gauging stations in red and ONDE stations in blue for the Albarine, France only) and field campaign observations (photo 
traps, water level loggers, water temperature loggers, conductivity loggers). 

2.2 Model structure 

The models for the six DRNs were developed in a joint effort by INRAE and FSU using the process-

oriented model J2000 (Krause 2001, 2002) together with the modular object oriented modeling system 

JAMS (Kralisch and Krause 2006) considering both process dynamics at the reach and HRU level to 

account for surface, sub-surface, and groundwater flow from hillslopes into the stream and along 

stream segments until the outlet. From climate forcing data, JAMS/J2000 simulates plant-related 

ecohydrological processes as well as the soil water balance and groundwater processes at the HRU 

level and based on that different runoff components at the reach level (Figure 2.4).  

Due to the modular design of the underlying JAMS modeling framework (Kralisch and Krause 2006), 

the models were harmonized with respect to the aims of DRYvER and the European databases, which 

allowed a transparent and reproducible modeling structure and process. For that purpose, 

modifications from the standard J2000 hydrological model were made for DRYvER using the 

evapotranspiration module from Branger et al. (2016) to compute potential evapotranspiration using 

the reference evapotranspiration and spatially distributed crop coefficients. Besides, the adapted 

J2000 snow module by Gouttevin et al. (2017) was used.      

Additionally, adaptations were made to account for anthropogenic influences in the French DRN to 

account for Vouglans hydroelectric dam. The dam is at the origin of an artificial lake with a capacity of 

605 Mm³, and is causing a change in the hydrological regime of the Ain river downstream of the 

reservoir. A module representing the Vouglans reservoir was added to the JAMS/J2000 model. This 

module either stores water from the reach into the reservoir or releases water from the reservoir into 

the reach according to an operational instruction (Branger et al. 2016) provided as input to the model. 
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Figure 2.4: Schematic representation of the hydrological processes modeled in JAMS/J2000 at the HRU and reach level 

according to Krause (2001), Figure adapted from (Watson et al. 2020) 

 

2.3 Model calibration 

Several techniques were used to calibrate the hydrological models for the six pilot-watersheds to find 

the optimal models and gain a wider perspective of the model’s sensitivity, parameter interactions,      

and uncertainty by investigating hydrological process patterns via e.g. hydrological signatures. 

2.3.1  Calibration of Snow Parameters   

Snow parameters were calibrated separately by comparing the simulated snow cover with the 

catchments' fractional snow cover area from MODIS10A2 datasets using the Kling-Gupta Efficiency 

(KGE). For that purpose, the catchment fractional snow cover area (fSCA) from the MOD10A2 dataset 

available at an 8 days resolution (Hall and Riggs 2016) was used as observed data. For that purpose, 

MOD10A2 fSCA was downloaded for the period 2000-10-15 to 2021-05-25 and aggregated at the large 

catchment scale. The choice of calibrating the snow parameters at the catchment scale (instead of 

calibrating its spatial distribution) was motivated by the fact that the Vantaanjoki catchment (which is 

more influenced by snow than the other catchments) is characterized by flat topography and the snow 

accumulation and snowmelt processes are assumed to be spatially uniform in the catchment. For the 

Ain, Fekete, Morava, and Krka catchments, snow cover is mainly located in the mountainous areas and 

has a limited impact on the hydrological response. The Guadiaro River Basin is not characterized by a 

regular winter snow cover, and therefore, snow calibration was neglected for Spain. 

For the snow calibration, the NSGA-II algorithm (Deb et al. 2002) with 1000 iterations was used for the 
automatic calibration, and the KGE as an objective function. The model time series were split into a 
period of initialization (1995 to 2000), a period of calibration (even years from 2000 to 2020), and a 
period of validation (remaining years from 2000 to 2020). 
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2.3.2 Calibration of discharge 

Measured streamflow available at different gauging stations (2 to 23 stations depending on the DRN) 

was used for model calibration and validation to quantify the model’s ability to simulate hydrological 

processes in different parts of the catchment. For this purpose, the available streamflow data was split 

into two periods for calibration and validation (Table 2.4). These datasets as well as different statistical 

criteria were used for the model optimization in all 6 DRNs. In this work, several efficiency criteria were 

used, but only the Kling-Gupta-Efficiency was used to present the results (section 3.2) since this 

measure aggregates different objectives, representing the overall bias, correlation, and variability 

(Gupta et al. 2009). The KGE ranges from -∞ to 1, where 1 represents a perfect fit of measured and 

simulated streamflow. Due to different catchment characteristics, process dynamics, and data 

availability in the 6 DRNs, the calibration approaches were slightly different in the two groups but were 

jointly agreed on and led to similar results. The calibration procedures are therefore presented 

separately. 

The list of the calibrated parameters with their calibration range is presented in Appendix A.3; Table 

A1 and all the final parameter values can be found in the JAMS/J2000 model datasets (section 6). 

Table 2.4: Calibration and validation periods 

Catchment Initialization period Calibration period Validation period 

Krka 01/10/2000 - 30/09/2002 01/10/2002 - 30/09/2012 01/10/2012 - 01/01/2020 

Guadiaro 01/10/1998 - 30/09/2002 01/10/2002 - 30/09/2012 01/10/2012 - 03/07/2018 

Guadiaro - Genal 01/10/1998 - 30/09/2001 01/10/2001 - 01/02/2004 30/10/2012 - 02/07/2018 

Velička 01/10/1998 - 30/09/2002 01/10/2002 - 30/09/2012 01/10/2012 - 30/09/2020 

Ain 01/10/1990 - 30/09/1995 01/10/1995 - 30/09/2009 01/10/2009 - 01/01/2020 

Fekete 01/10/1995 - 30/09/2000 01/10/2000 - 30/09/2012 01/10/2012 - 03/07/2019 

Vantaanjoki 01/10/2000 - 30/09/2005 01/10/2005 - 30/09/2014 01/10/2014 - 31/12/2020 

 

Model calibration and validation (Guadiaro, Morava, Krka catchments) 

The models’ performance of simulating the measured streamflow at multiple gauging stations was 

evaluated using a semi-automatic calibration method, which utilizes automatic and manual calibration 

techniques. To assess model performance, different performance criteria were used, which focus on 

different evaluation criteria, such as low-flow, high flows, and bias  (Kundzewicz et al. 2018; Table 2.5).  

Overall, 15 global model parameters were calibrated, which showed a moderate to high sensitivity on 

processes related to infiltration, evapotranspiration, percolation, soil, groundwater, and runoff routing 

(Appendix A.3; Table A1). Besides, hydrogeological parameters influencing the recession of the water 

from shallow and deep groundwater aquifers were calibrated in a spatially distributed manner. The 

rationale behind this was to allow a good representation of groundwater processes, which are 

especially important in karstic regions, such as in Krka (Croatia).      

For the automatic optimization, the multi-objective, non-dominated sorting genetic search algorithm 

NSGA-II was applied (Deb et al. 2002). Here, the three performance criteria NSE, NSElog and pBias (Table 

2.5) at different gauging stations were used in 5000 iterations to optimize the 15 parameters and 

hence, simulated streamflow for each DRN. Additionally, the process was repeated for different 
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spatially distributed hydrogeology parameter sets addressing the varying groundwater recession from 

shallow and deep groundwater aquifers. This resulted in several pareto-optimal model solutions, 

which still inherited strong differences of hydrological process patterns, considering, for example, the 

overland flow or groundwater contribution to the overall runoff.  

Even though statistical measures have the advantage to objectively classify model performance and 

allow comparison across different models, they do not substitute visual interpretation of simulated 

and observed hydrographs and interpretation of process dynamics by domain experts (Legates and 

McCabe 1999; Moriasi et al. 2007). Therefore, the models were manually calibrated in a second step 

to fine-tune the results of the automated calibration procedure. The focus here was particularly on the 

representation of the runoff recession and groundwater contribution. Besides, due to the modeling of 

flow intermittence, the performance of modeling low flows was weighted higher than the model’s 

ability to simulate high flows accurately. Further, when selecting the final parameter sets for the DRNs, 

sets showing higher performance at the smaller basin were given preference over sets showing higher 

performance at the larger basin. 

During calibration, the following hydrological characteristics were taken into account: 

i) runoff components (Hortonian and Hewlettian runoff, subsurface flow from soil and upper 

groundwater zones as well as baseflow), precipitation, actual evapotranspiration, and soil 

saturation;  

ii) seasonal and annual water balances;  

iii) spatially distributed processes at the HRU level: runoff generation, interflow, soil water 

balancing, evapotranspiration, and groundwater recharge.   

Finally, from all pareto-optimal solutions identified through automatic and manual calibration, the 

most plausible model in terms of process representation according to the observed data and the 

knowledge about environmental characteristics was selected.  

Table 2.5: Efficiency criteria used for automatic model calibration and performance evaluation (Gupta et al. 2009) 

Efficiency criteria Definition and reason for selection 

Nash-Sutcliffe Efficiency (NSE) Multi-objective function, strong focus on simulation of peak flows, 
widely used 

Logarithmic Nash-Sutcliffe Efficiency (NSElog) Like NSE, but logarithm focuses on the representation of simulation 
of low flows  

Relative Volume Error (pBias) Representing overall under or overestimation 

Kling-Gupta-Efficiency (KGE) multi-objective function, representing bias, correlation, and flow 
variability 

 

Model calibration and validation (Ain, Fekete, Vantaanjoki catchments) 

The calibration for the Ain, Fekete, and Vantaanjoki catchments also uses a multi-stations and multi-

objectives approach, but using a different method. 15 global parameters related to evapotranspiration, 

infiltration in the soil layer, and percolation to the groundwater layer, as well as 4 spatially distributed 

parameters related to the groundwater reservoirs, are calibrated (Appendix A.3; Table A1). The 

calibration and validation periods (Table 2.4) were selected based on the availability of the observed 

discharge data in the different river basins. 
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In a first step, the Latin Hyper Cube Sampling (LHS) is used to generate 5000 model runs for each pilot 

river basin (the calibration ranges are provided in Appendix A.3; Table A1). Then the calibrated set of 

parameters is selected among the 5000 parameters sets so that the model performs best on (i) a multi-

objective function (MOF) representing KGE, low-flows (10th percentile Q10), and mean annual outflow 

(Qyr), (ii) all the stations.  

The MOF function is computed for all stations and all parameter sets (Eq. 1), then a weighted average 

over the stations is calculated to prioritize the stations located at the outlets of the large and small 

river basins (𝑅𝑒𝑓1) and the other stations located in the small river basin (𝑅𝑒𝑓2) (Eq. 2) (other stations 

located in the large catchment are referred as 𝑅𝑒𝑓3). The final calibrated set of parameters is selected 

among the model runs leading to the lowest 𝑀𝑂𝐹𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠. 

𝑀𝑂𝐹 =  0.6 ∗ (1 − 𝐾𝐺𝐸) + 0.2 ∗
|𝑄10𝑠𝑖𝑚− 𝑄10𝑜𝑏𝑠|

 𝑄10𝑜𝑏𝑠
+  0.2 ∗

|𝑄𝑦𝑟𝑠𝑖𝑚− 𝑄𝑦𝑟𝑜𝑏𝑠|

 𝑄𝑦𝑟𝑜𝑏𝑠
                    (1) 

𝑀𝑂𝐹𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 =  
1

∑ 𝑤𝑅𝑒𝑓1 + ∑ 𝑤𝑅𝑒𝑓2 + ∑ 𝑤𝑅𝑒𝑓3
∗ (𝑤𝑅𝑒𝑓1 ∑ 𝑀𝑂𝐹𝑖

𝑖∈𝑅𝑒𝑓1

 +  𝑤𝑅𝑒𝑓2 ∑ 𝑀𝑂𝐹𝑗

𝑗∈𝑅𝑒𝑓2

+  𝑤𝑅𝑒𝑓3 ∑ 𝑀𝑂𝐹𝑘

𝑘∈𝑅𝑒𝑓3

) 

with 𝑤𝑅𝑒𝑓1 = 5, 𝑤𝑅𝑒𝑓2 = 2, and 𝑤𝑅𝑒𝑓3 = 1                                                                                              (2) 

 

The Ain catchment is characterized by karstic areas which have a strong impact on the hydrological 

response of the sub-catchments. As the JAMS/J2000 model does not represent the karst-related 

processes, a correction factor k was applied to the observed discharges at the gauges before 

comparison with simulated discharges to consider water input or water losses in sub-catchments 

through the karstic network (Eq. 3). 

𝑘 =
𝑃 − 𝐸𝑇𝑎𝑐𝑡− 𝑄

𝑃  − 𝐸𝑇𝑎𝑐𝑡
                (3) 

with 𝑃 the observed mean annual precipitation in mm (from Safran reanalysis; Vidal et al. 2010), 𝐸𝑇𝑎𝑐𝑡 

the mean annual actual evapotranspiration simulated with JAMS/J2000 in mm (forced with Safran 

reanalysis as climate input data), and 𝑄 the observed mean annual outflow in mm. 

2.4 Modeling of flow intermittence at the reach level  

The results of the JAMS/J2000 hydrological models for the 6 DRNs were used to train a Machine 

Learning model to predict the flow intermittence at the reach level. Therefore, the Random Forest (RF) 

classification and regression model (Breimann 2001) was used to predict the daily state of flow (dry or 

flowing) at the reach level (the pool condition could not be considered in the flowing conditions due 

to a lack of observed data as emphasized in D1.1; Künne and Kralisch (2021). RF models have already 

been used to predict the perennial or intermittent flow regime of rivers at the catchment scale in 

González-Ferreras and Barquín (2017), and in Beaufort et al. (2019), a comparison of 4 different 

classification models to predict the flow intermittence showed good performances using the RF model. 

The model uses 20 explanatory variables (based on Beaufort et al. (2019); Table 2.6): reach 

characteristics (drainage area, slope, type of LULC, type of soil, hydro-geological class), daily 

hydrological variables simulated with the JAMS/J2000 model at the reach scale (discharge, 

groundwater contribution  daily at t0 and t-10), daily meteorological and hydrological variables 

aggregated at the catchment scale (rainfall, temperature and evapotranspiration during the 10, 20 and 

30 previous days as well as soil and, groundwater saturation). The daily hydrological variables 
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simulated with the JAMS/J2000 model used as input data for the RF model are simulated from 

2005-10-01 to 2021-09-30. 

As output, the RF model gives the flow class (0=dry or 1=flow) for each tree of the random forest. For 

each day and each reach, if the mean of all the trees is lower than 0.5, the reach is considered dry, 

otherwise the reach is considered flowing. 

For each DRN, the RF model was trained with 75 % of observed flow data and tested on the 25 % of 

the remaining data. For that purpose, the RF models were implemented and calculated using the R 

package “randomForest”  (Liaw and Wiener 2002). 

The trained RF models are then used to extrapolate the daily state of flow for every reach in the DRNs 
during the simulation period (2005-10-01 – 2021-09-30). 

Table 2.6: Variables of training data set for the RF model 

 
explanatory variables 

dependent 
variable 

hydrological model results for each 
reach 

hydro-climatological model results 
aggregated at the catchment scale  

reach characteristics training data 

Discharge [m3/s] Incoming liquid water (rainfall + 
snow melt), sum [mm] of 10, 20, 30 
days 

drainage area of the 
specific reach [km²] 

observed flow 
data [0=dry, 
1=flowing,]  
 

Mean discharge of 10 days [m3/s] Air temperature, mean [°C] of 10, 

20, 30 days 

strahler order [-] 

Groundwater contribution to the 

discharge [m3/s] 

Actual evapotranspiration, sum 

[mm] of 10, 20, 30 days 

reach slope [%] 

Mean groundwater contribution to 

the discharge of 10 days [m3/s] 

indicator of soil saturation [-] (actual 

volumetric soil water content / 

maximal volumetric soil water 

content [m³/m³], range 0 - 1) 

hydro-geological classes 

 indicator of groundwater level [-] 

(actual groundwater/maximum of 

actual groundwater, range 0 - 1) 

soil classes 

LULC classes 
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n order to evaluate the ability of the Random Forest model to represent the dry and flowing events, 

four efficiency criteria are computed: the probability of prediction of dry events (POD drying), the 

probability of prediction of flowing events (POD flowing), the false alarm ratio of dry events (FAR dry), 

and the false alarm ratio of flowing events (FAR flowing) (Table 2.7). 

Table 2.7: Efficiency criteria for the evaluation of the RF model  

 Observed 

 POD dry = a / (a+c) 
 

dry flowing  

POD flowing = d / (b+d) 
 

Simulated 
 

 

  

dry a b  

FAR dry = b / (a+b) 
 

flowing c d  

FAR flowing = c / (c+d) 
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3 Results 

3.1 Modeling entities 

The processed input classes as well as the delineated Hydrological Response Units (HRUs) and reaches 

are shown exemplary for the Guadiaro River Basin (Appendix A.2; Figure A2.1). The overlay of the 

different classes delineated from the DEM (slope, aspect), LULC, soil, hydrogeology (Figure A2.1 a) - e)) 

resulted in 9,557 HRUs and 2,825 reaches (Figure A2.1 f)), which equals an average HRU size of about 

16 ha and an average minimal drainage area for the reach of 53 ha. The delineations were done for all 

6 DRNs and are summarized in Table 3.1. Besides, the discrepancies between the original river 

networks from the DRN teams and the computed river networks for each DRN were explained in 

separate documents (section 6) and is shown for the small watersheds of the 6 DRNs in Appendix A.1; 

Figure A1.1 – A1.6). 

Table 3.1: Average area of the modeling entities for the JAMS/J2000 models and information about thresholds 

River Basin Mean HRU 
size [ha] 

Min reach 
drainage area [ha] 

average length 
of reaches [m] 

Info 

Guadiaro (Spain) 15.7 53.0 960 -  

Fekete (Hungary) 24.1 50.0 1043 some of the artificial channels in the Fekete 
reference river network are not 
represented in the model  

Ain (France) 29.2 37.5 820 resolution increased to match sampling 
sites 

Krka (Croatia) 12.9 25.0 677 resolution increased to match sampling 
sites 

Morava (Czech 
Republic) 

35.7 72.0 1146 lowest resolution due to large basin area 
(A = 9,380 km²) 

Vantaanjoki 
(Finland) 

21.2 35.0 872 resolution increased to match sampling 
sites 

3.2 Hydrological process dynamics at the six DRNs 

In the following, results of the hydrological modeling with JAMS/J2000 are shown for each DRN 

separately. Plots are shown for the gauging station inside or at the outlet of the small watershed as 

well as closest to the outlet of the large watershed. Besides, efficiency criteria are shown for all gauges 

available for the DRN. The results are shown for the calibration and validation period using the KGE 

efficiency criteria.  

3.2.1  Krka River Basin (Croatia) 

The results of the hydrological modeling show a very good representation of the simulated streamflow 

for the small watershed Butižnica at the station Bulin Most during both model calibration and 

validation. The model replicates high-flows, low-flows and the water balance very well, which is shown 

by a KGE of 0.84 during calibration and 0.82 during validation (Figure 3.1). The model performance at 

the outlet of the Krka catchment Skradinski Buk replicates runoff dynamics, such as the runoff reaction 

to rainfall events, recession and especially low-flows very well (NSElog 0.78 during calibration and 0.5 

during validation). However, due to the underestimation of high-flows the bias is negative and 
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therefore KGE only moderate for this station. This compromise was accepted for the model’s ability of 

simulating low-flows very accurately (Figure 3.3), and under consideration of the overall aim of 

modeling flow intermittence.  

 
Figure 3.1: KGE for the a) calibration period (2002-2012) and b) the validation period (2012-2020)  for the Krka catchment. 

 
Figure 3.2: Simulated (red) and observed (blue) discharge at the Bulin most gauging station (in the Butižnica catchment). 

KGE calibration = 0.84, KGE validation = 0.82 
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Figure 3.3: Simulated (red) and observed (blue) discharge at the Skradinski buk gauging station (in the Krka catchment). KGE 

calibration = 0.50, KGE validation = 0.35 

3.2.2  Guadiaro River Basin (Spain) 

The model performance of simulating discharge within the Guadiaro river basin shows a different 

picture for the different gauging stations within the basin as well as between the periods of calibration 

and validation, which is expressed by moderate to good KGE values (Figure 3.4). Gauging stations in 

Guadiaro are not located at the outlets of the small and large watershed. For that reason, the station 

draining the largest area (Pablo Buceite) was selected as the outlet for Guadiaro and the only station 

in Genal (Jubrique) used to evaluate the modeling performance in the small watershed, Genal. 

Additionally, an inhomogeneous pattern was found for the measured streamflow at the station 

Jubrique in Genal, which is why only specific years were used for calibration and validation (section 

4.2.3). Besides, another station, located in the upper Guadiaro (Tr. Majaceite) was rejected completely 

due to inhomogeneity. 

The model shows a good performance in replicating the streamflow at station Jubrique in the Genal 

watershed, especially predicting the summer low flows (Figure 3.5). The modeling of the discharge at 

the station Pablo Buceite, located in the downstream Guadiaro river shows a similarly well 

representation of the hydrological dynamics during high and low-flows as well as in between, during 

ascending and descending flow conditions (Figure 3.6). However, the station Pablo Buceite (Guadiaro) 

shows an over prediction during calibration and an underprediction during the validation period, which 

was not detected in the Genal or Hozgarganta river. The observed discharge increases during the 

validation period, which was not observed for the ERA5-Land precipitation data. Therefore, the reason 

for that could also be related to data inconsistencies, which were also observed in Jubrique (Genal) as 

well as Tr. Majaceite (Guadiaro upstream; section 4.2.3). For these reasons, the model was considered 

to work well and used for further predictions.          
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Figure 3.4: KGE for the a) calibration period (2002 - 2012; Genal: 2001 - 2004)  and b) the validation period (2012 - 2018)  for 

the Guadiaro catchment 

 
Figure 3.5: Simulated (red) and observed (blue) discharge at the Jubrique gauging station (in the Genal catchment). KGE 

calibration = 0.75, KGE validation = 0.76 
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Figure 3.6: Simulated (red) and observed (blue) discharge at the gauging station Pablo Buceite  (in the Guadiaro catchment). 

KGE calibration = 0.82, KGE validation = 0.37 

3.2.3 Morava River Basin (Czech Republic) 

The results of the hydrological modeling in the Morava River Basin show a good representation of the 

observed discharge throughout the basin with satisfactory to good KGE values, ranging from 0.49 to 

0.82 during the calibration period, and from 0.37 to 0.73 during the validation period. The model 

performance shows good results in simulating the streamflow dynamics measured at the 7 stations 

along the Morava river, manifesting in KGE values ≥ 0.6 during the validation period (Figure 3.7). 

Whereas the model performance for the smaller Velička catchment shows a satisfactory, but worse 

replication of streamflow dynamics than in the large catchment. The model overpredicts discharge in 

certain years, such as 2015 (Figure 3.8). It is however, important to mention that the year 2015 was 

overpredicted at most stations and also at the outlet station of the large catchment, Morava Strážnice 

(Figure 3.9). This phenomenon could not be observed in other years at the stations in the main stem 

of the Morava river. 
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Figure 3.7: KGE for the a) calibration period (2002-2012) and b) the validation period (2012-2020; Strážnice Morava 2012-

2018)  for the Morava catchment 

 
Figure 3.8: Simulated (red) and observed (blue) discharge at the Strážnice Velička gauging station (outlet of the Velička 

catchment). KGE calibration = 0.63, KGE validation = 0.46 
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Figure 3.9: Simulated (red) and observed (blue) discharge at the Strážnice Morava gauging station (outlet of the Morava 

catchment). KGE calibration = 0.82, KGE validation = 0.60 

3.2.4 Ain River Basin (France) 

The results show a good fit between simulated and observed discharge for the Ain catchment where 

KGE values are above 0.6 for most of the gauging stations both during the calibration and validation 

periods (Figure 3.10). Figure 3.11 and Figure 3.12 show that the temporal dynamics of the discharge 

at the outlet of the large and small catchments are well represented by the model. 
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Figure 3.10: KGE for the a) calibration period (1995-2009) and b) the validation period (2009-2019)  for the Ain catchment. 

Missing values during the validation period are due to the shutdown of gauging stations 

 
Figure 3.11: Simulated (red) and observed (blue) discharge at the Chazey station (outlet of the Ain catchment) for the 

validation period. KGE calibration = 0.76, KGE validation = 0.79 
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Figure 3.12: Simulated (red) and observed (blue) discharge at the Saint-Rambert station (in the Albarine catchment) for the 

validation period. KGE calibration = 0.76, KGE validation = 0.79 

3.2.5 Fekete River Basin (Hungary) 

The JAMS/J2000 shows contrasted performance in Fekete (large catchment) and Bukkosdi (small 

catchment; Figure 3.13). Discharges are well simulated in the Bukkosdi catchment (Figure 3.13.b and 

Figure 3.15), except for one station with a negative KGE during the calibration period. The differences 

of performances between the gauging stations in the Bukkosdi catchment may be due to the karstic 

area in the upstream part of the basin. 

The Fekete catchment is characterized by an artificialized river network with artificial channels that 

could not be represented in the model which could explain the poor performance of the model in the 

larger catchment (Figure 3.14). 

Moreover, there is an uncertainty regarding the climate input data as there is no local meteorological 

station in the catchment to validate precipitation and air temperature from the ERA5-land reanalysis.  
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Figure 3.13: KGE for the a) calibration period (2000-2012) and b) the validation period (2012-2019)  for the Fekete 

catchment 

 
Figure 3.14: Simulated (red) and observed (blue) discharge at theKemes station (in the Fekete catchment) for the validation 

period. KGE calibration = 0.47 
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Figure 3.15: Simulated (red) and observed (blue) discharge at the Sumony station (outlet of the Bukkosdi catchment) for the 

validation period. KGE calibration = 0.67, KGE validation = 0.5 

3.2.6 Vantaanjoki River Basin (Finland) 

Discharges are overall well simulated in the Vantaanjoki and Lepsämänjoki catchments (Figure 3.16). 

The temporal dynamics are well represented by the JAMS/J2000 model in the Lepsämänjoki catchment 

(Figure 3.18), however, low-flows tend to be overestimated at the Olunkyla station (outlet of the larger 

catchment, Figure 3.17). 
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Figure 3.16: KGE for the a) calibration period (2005-2014) and b) the validation period (2014-2020)  for the Vantaanjoki 

catchment 

 
Figure 3.17: Simulated (red) and observed (blue) discharge at the Olunkyla station (outlet of the Vantaanjoki catchment) for 

the validation period. KGE calibration = 0.66, KGE validation = 0.69 
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Figure 3.18: Simulated (red) and observed (blue) discharge at the Lepsämänjoki station for the validation period. KGE 

calibration = 0.74, KGE validation = 0.81 

3.2.7 Simulation of the snow cover  

The novel approach of calibrating the snow accumulation, metamorphosis and snow melt resulted in 

a precise replication of the snow cover area and timing in comparison to the MODIS10A2 dataset 

(Figure 3.19). The results for all DRNs are shown in Table 3.2, whereas the corresponding Figures are 

shown in Appendix A.4.  

Results show very good performances for the Ain and Vantaanjoki catchments, which are the two 

catchments most impacted by snow. For all catchments the models are able to represent accurately 

the timing of the snowfalls and the duration of the snow cover. 
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Figure 3.19: Simulated (red) and observed (blue)  snow cover area (fSCA) for the Ain catchment 

Table 3.2: KGE values for the fractional snow cover area (fSCA) 

DRN KGE calibration  KGE validation 

Ain 0.81 0.74 

Fekete 0.68 0.57 

Krka 0.36 0.46 

Morava 0.86 0.83 

Vantaanjoki 0.80 0.74 

 

3.3 Prediction of Flow Intermittence 

This section presents the results for the modeling of flow intermittence for the Albarine, Bukkosdi, 

Genal, Lepsämänjoki, and Velička DRNs. 

No results are presented for the Butižnica DRN (Croatia) due to insufficient flow intermittence data to 

train and validate the RF model. Available data for the Butižnica DRN are the observed discharges from 

the Bulin Most gauging station which is characterized by a perennial flow (Figure 3.2), and 21 

observations from the DryRivers App made on the 2021-10-11 and 2021-11-11 (after the end of the 

JAMS/J2000 simulation period) and mostly along the main river (Table 2.3 and Figure 2.3). These 21 

observations are not sufficient to characterize the temporal and spatial variability of drying in the 

Butižnica DRN. 

Table 3.3 shows the efficiency criteria of the RF model for each DRN. The results show very good 

performances of the RF model in the Albarine, Bukkosdi, Lepsämänjoki and Velička DRNs with POD 
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drying above 90%. The RF models in the Albarine and Bukkosdi DRNs tend to slightly overestimate 

drying events with FAR drying above 5%.  

For the Genal DRN, the POD drying and FAR drying show that the RF models do not represent dry 

events as well as in other DRNs. Regarding the Genal DRN, this is mainly due to the lack of available 

observed data used to train the RF model. 

Table 3.3: Performance of the RF model (validation dataset) 

DRN POD dry [%]  FAR dry [%] POD flowing [%] FAR flowing [%] 

Albarine 90.7 5 98.9 2.2 

Bukkosdi 91.7 8.1 96.9 3.2 

Genal 50 22.2 99.8 0.8 

Lepsämänjoki 91.7 1.8 99.9 0.4 

Velička 92.9 4.3 99.3 1.2 

3.4 Flow intermittence indicators 

The predicted flow state can then be used to compute intermittence indicators for each DRN.  

Figure 3.20and Figure 3.24 present maps of the ConD intermittence indicator (mean annual number 

of days with a dry condition; Künne and Kralisch 2021) for the small catchments. The maps of ConD 

indicators allowed us to evaluate the spatial patterns of drying in the DRNs. For all watersheds, the 

simulated spatial patterns seem to be consistent with observations, with more drying on the smaller 

tributaries and less or no drying in the main river sections. These results are also consistent with 

observed data, showing a North-South gradient of flow intermittence from Finland to Spain: the model 

simulates a pronounced drying of river reaches in the Genal catchment (around 2 to 3 months of dry 

states in the small tributaries) and almost no drying in the major part of the Lepsämänjoki DRN, except 

for the smallest tributaries. 

For the Albarine and Bukkosdi DRNs, Figure 3.20.b and Figure 3.21.b show a classification of the 
reaches based on observations provided by the DRN field teams. The comparison between the 
simulated and observed spatial pattern of drying shows that even if drying events seem to be 
overestimated along the middle of the Albarine river, the areas with observed flow intermittence in 
the upstream and downstream parts of the catchment are well represented by the model. In the 
Bukkosdi DRN, the general spatial pattern of flow intermittence is also well represented by the model. 
However, in the upstream part of the DRN, some reaches classified as perennial by the DRN 
leader/field team are simulated as intermittent. For the Genal RB the comparison of the model results 
and the observed data, provided by the DRN field teams (Figure 3.22.a and 3.22.b) shows a high 
conformity. However, the model can be improved during the next month with more data observations. 
Figure 3.24.a and Figure 3.24.b show the results of the RF model and the observed classifications by 
the DRN field teams for the Velička DRN. The calculated mean annual number of days with a dry 
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condition (ConD) shows a strong alignment with the observed flow conditions, especially in the 
downstream part of the Velička catchment.   

 
Figure 3.20: a) Maps of ConD index (Mean annual number of days with a dry condition) for the Albarine DRN, b) 

classification of the reaches (perennial or intermittent) provided by the DRN leader based on observations 

 
Figure 3.21: a) Map of ConD index (Mean annual number of days with a dry condition) for the Bukkosdi DRN, b) classification 

of the reaches (perennial or intermittent) provided by the DRN leader based on observations 
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Figure 3.22: a) Map of ConD index (Mean annual number of days with a dry condition) for the Genal DRN.  b) classification of 

the reaches (perennial or intermittent) provided by the DRN leader based on observations 

 
Figure 3.23: Map of ConD index (Mean annual number of days with a dry condition) for the Lepsämänjoki DRN. 
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Figure 3.24: a) Map of ConD index (Mean annual number of days with a dry condition) for the Velička DRN. b) classification 
of the reaches (perennial or intermittent) provided by the DRN leader based on observations 

4 Discussion 

In this report, the discussion should address the limitations and uncertainties of both data and 

developed models concerning the specific tasks. Besides, an effort is made to quantify possible 

impacts on the objectives of DRYvER. 

4.1 Generation of river networks as part of modeling entities  

The generation of the river networks is part of the modeling process and incorporated into the 

delineation of the modeling entities, which are Hydrological Response Units (HRUs) and reaches 

(Section 3.1). Therefore, the synthetic river networks are mainly dependent on the DEMs, but also 

tightly coupled with other spatial data sets. In that process, the DEM resolution as well as the minimal 

drainage area selected as a threshold delimits the resolution of the river network. To assure a similar 

spatial basis and resolution throughout the 6 European DRNs, a minimum drainage area was chosen 

at the beginning of the project, which was about 30 ha to 50 ha. However, adaptations to the data 

were made to match the reference networks provided by the DRN leaders as well as the river networks 

generated by other WPs (section 6). Even though the provided river networks could not always be 

replicated by the available DEMs, the aim was to match the sampling points provided by WP2. This 

was possible in all cases, except for one sampling point in Butižnica (Croatia; BUT 08). To match this 

point, the minimum drainage area would have been reduced, which would result in a very high 

resolution and challenges in the modeling process as well as in the overall approach of using a similar 

resolution throughout all DRNs. Besides, the Croatian river network already has the highest resolution, 

with a minimum drainage area of 25ha.    

4.2 Input data sets for hydrological modeling with JAMS/J2000      

4.2.1 Meteorological data  

Meteorological data sets are crucial to force the hydrological models. Due to inefficiencies in available 

locally observed data as well as the constraint of having up-to-date datasets, Mimeau et al. (2022) 

evaluated and compared different climate data sets to measured station data and their impact on 

simulated runoff of both, modeled and reanalysis products. The ERA5 Land product showed the  was 

selected as a result of this assessment. However, the uncertainty of ERA5 Land compared to the 
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observed data varies a lot throughout the 6 DRNs, with considerable variability on simulated river 

runoff (Figure 4.1).  

 
Figure 4.1: Mean monthly precipitation (a) and simulated runoff (b) in the Ain, Fekete, Krka, Vantaanjoki, and Guadiaro 

catchments obtained with different climate datasets: Eobs daily gridded observational dataset (Cornes et al. 2018), Era5-
land reanalysis (Muñoz-Sabater et al. 2021), Safran French reanalysis (Vidal et al. 2010), local meteorological stations (GSOD 
and https://en.ilmatieteenlaitos.fi/download-observations), WFDE5 (bias-adjusted ERA5 reanalysis; Cucchi et al. (2020), and 

Carpatclim (reanalysis on the Carpathian region; Szalai et al. (2013) 
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4.2.2 Spatial data and biophysical information 

European datasets were used to generate these input classes as well as calculate the model 

parameters, which differ in each DRN. 

The analysis of the hydrogeological data (BGR 2013; Andreas and Duscher 2019) showed that Guadiaro, 

Fekete, Ain, and Krka share karstified rocks in some areas of the catchment. Almost 60 % of the Krka 

DRN and 94 % of the Ain DRN contain carbonate rocks, such as dolomite and limestone, which are 

often karstified  (Appendix A.5; Figure A9). Karst contains different types of porosity, which complicate 

the modeling of these areas (Hartmann 2013). The J2000 model used in this study showed its 

usefulness and advantages over other models in modeling karstified systems and seepage from the 

alluvial river bed in the past (Fink et al. 2007; Watson et al. 2021). However, there was no data for 

these DRNs available to calibrate or validate the hydrogeological process dynamics in these areas. 

Further, the European soil database (European Commission; Panagos et al. (2012), allowed using 

consistent soil classes and physical data. However, the data source is very coarse-grained and did not 

provide certain physical information, such as bulk density. Besides, layered information was very 

coarse, which only allowed a lumped modeling of soil water processes. Therefore, a local soil database 

with physical information of soil horizons was used for Spain (Llorente et al. 2018) to calculate physical 

properties with pedotransfer functions  (Ad-hoc-AG Boden 2005; FAO 2006), which was a similar, but 

different approach than for the other DRNs. In the future, high-resolution and layered soil data could 

improve the models.  

4.2.3 Observed river runoff 

Two stations were excluded completely due to strong data inhomogeneity. These were the station 

Kljuice in Croatia and Tr. Majaceite in the upstream part of the Guadiaro DRN in Spain. Besides, the 

observed river runoff at station Jubrique in Genal showed strong inconsistencies, too (Figure 4.2). 

Besides, similar problems occur in discharge data from Hungary and Finland. In Hungary, it is not yet 

clear if 0-values describe no-flow or missing data. 
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Figure 4.2: Inhomogeneity of observed streamflow data at station Jubrique in the Genal catchment (Spain).  

4.2.4 Irrigation 

Additional information is required for the modeling of irrigation. For example, abstracted water used 

for irrigation would be abstracted at a specific point and transferred to another. Depending on the 

location and type of irrigation, e.g. sprinkler or drip irrigation, the irrigated water would infiltrate, be 

used by plants, or evaporate at the new location. Observations about water abstractions were made 

in Genal, but no data was available about the quantity of abstracted water or exact locations of 

abstractions and e.g. irrigation.  

In Velička, abstraction volumes were available for the last few years, but they did not explain the water 

imbalance in specific years or seasons. Besides, information about the type of usage (e.g. irrigation) 

and the exact location of the distributed water (e.g. specific HRU with arable land) were not available.  

This information could also lead to a better simulation of streamflow at the reach level and prediction 

of flow intermittence in the future to model the pathway of the abstracted water.  

4.3 Modeling of flow intermittence 

Despite the successful approach of using the JAMS/J2000 hydrological model results to train the RF 

model to predict flow intermittence, there is not yet enough observed data in space and time to fully 

understand and quantify patterns of drying. For that reason, the uncertainty is significant when the 

trained RF is used to extrapolate the state of flow to all reaches of the DRNs. Besides, with the current 

database of observed flow intermittence, it is not possible to predict “pool” conditions. Therefore, we 

assume that we would need a few more years of data for being able to model pool states Currently, 

there is almost no flow intermittence data for the Croatian catchment, which prevents the training of 

the RF model. 

The observed data contain a bias regarding the spatial representativeness of the entire river network. 

For example in the Finnish DRN observed data are concentrated in the Southern part of the catchment 
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and in the Spanish DRN, data is missing in the downstream part.  Besides, more data were collected 

during the dry season, therefore the training dataset may be biased with an over-representation of 

drying events. 

Several gauging stations are also affected by flow intermittence, but the use of this data can be 

uncertain due to unclear information on the meaning of 0-values. It was not always clear if 0-values 

correspond to drying events or missing values or water level below the sensor, particularly for the 

Hungarian DRN. 

5 Conclusion 

The multi-gauge, multi-objective validation of the six models showed satisfactory to good model 

performances for all DRNs. The modeling results were successfully used to train a Random Forest 

model to predict flow intermittence for five of the six DRNs.  

The hydrological modeling results are available to the Dryver project members (section 6) and will 

continue to be updated for the duration of the project. Table 5.1 presents the provided results and 

short-term next steps for each DRN. The upcoming steps can be summarized in the following bullet 

points: 

● Provision of all flow indicators from D1.1 (Künne and Kralisch 2021). 

● Integration of expected data from the DRNs, for example, photo trap data from Hungary. 

● Integration of provided water temperature data that could be used to increase the size of the 

flow intermittence datasets. However, the method to derive the states of flow from the water 

temperature measurements has not yet been developed for this project and should be 

developed in collaboration with the DRN field teams. 

● Additional data retrieval of observed state of flow to implement the prediction of flow 

intermittence in the Butižnica DRN. 

● Additional data recovery of observed flow state data during the year 2022 for all DRNs. 

● Extension of the simulation to include the data from the year 2022 to have more data to train 

and validate the model, and thus increase the reliability of the results.  

In the longer term, next steps are: 

● Quantification of the hydrological model sensitivity to the parameters and calibration method. 

● Evaluation of the sensitivity to predict the observed data samples used to train the RF to 

quantify a possible bias of these training datasets for an over-representation of drying events. 

For several types of observed data (ONDE stations, photo traps, citizen science), more data is 

collected during the dry season (section 4.3).  

● Assessment of the RF model’s ability to project the flow states under future climatic scenarios 

(in collaboration with Task 1.3)  
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Table 5.1: Summary of the provided results and next steps 

DRN 
Provided results (period of simulation : 
2005-10-01 to 2021-09-30) 

 Next steps 

Albarine 
● Simulated daily discharge for each reach 
● Simulated daily state of flow for each 

reach 

● Integrate data from water temperature loggers 
● Retrieve available observed flow intermittence 

data from DRN team for the year 2022 
● Extend the simulation results up to 2022-09-30 
● Provide all flow indicators 

Bukkosdi 
● Simulated daily discharge for each reach 
● Simulated daily state of flow for each 

reach 

● Integrate data from photo traps and water 
temperature loggers 

● Retrieve available observed flow intermittence 
data from DRN team for the year 2022 

● Extend the simulation results up to 2022-09-30 
● Provide all flow indicators 

Butižnica ● Simulated daily discharge for each reach 

● Retrieve more observed flow intermittence to 
simulate the flow conditions in the DRN  

● Extend the simulation results up to 2022-09-30 for 
discharge 

Genal 
● Simulated daily discharge for each reach 
● Simulated daily state of flow for each 

reach 

● Integrate data from water temperature loggers 
● Retrieve available observed flow intermittence 

data from DRN team for the year 2022 
● Extend the simulation results up to 2022-09-30 
● Provide all flow indicators 

Lepsämänjoki 
● Simulated daily discharge for each reach 
● Simulated daily state of flow for each 

reach 

● Integrate data from water temperature loggers 
● Retrieve available observed flow intermittence 

data from DRN team for the year 2022 
● Extend the simulation results up to 2022-09-30 
● Provide all flow indicators 

Velička 
● Simulated daily discharge for each reach 
● Simulated daily state of flow for each 

reach 

● Retrieve available observed flow intermittence 
data from DRN team for the year 2022 

● Extend the simulation results up to 2022-09-30 
● Provide all flow indicators 

6 Shared data and results 

Data, models, parameter values, flow indicators, and simulated results are accessible to all DRYvER 

members on the shared Teams repository here (in WP1 - Hydrological trajectories of DRNs/Results). 

The JAMS/J2000 models and RF models for each DRN can be found in the “models” folder. 

The “data” folder contains for each DRN : 

• a shapefile with the river network used for the hydrological modeling, 

• a pdf file describing the method used for the generation of the river networks and explaining 

the main differences between the generated river network and the reference river network 

provided by the DRNs, 

• a shapefile with the outline of the small catchment 

• the observed flow intermittence data used to train and validate the Random Forest model 

• the results of the hydrological modeling for the present period (2005 - 2021) (for more 

detailed description see below) 

• the flow indicators 1 to 11 as defined in the deliverable 1.1 (Künne and Kralisch 2021) 

https://erdyn.sharepoint.com/:f:/r/sites/DRYvER951/Documents%20partages/WP1%20-%20Hydrological%20trajectories%20of%20DRNs/Results?csf=1&web=1&e=e67Gj5
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• a zip-file containing the JAMS “dryver_indices.jam” component to calculate the flow 

indicators defined in the deliverable 1.1 as well as the JAMS data explorer for further spatio-

temporal analysis of the flow intermittence indicators   

The results are shared as netcdf files containing (i) the discharges and baseflow simulated with the 

JAMS/J2000 models in m³/s, (ii) the probability of a flowing event, and (iii) the state of flow (dry or 

flowing) at daily time step for all the DRN reaches. 

An R script is provided to open the netcdf files, display the river networks and extract time series for 

specific reaches. It also provides an example for computing indicators of flow intermittence and 

displaying the results. 

More information regarding the shared models and data can be found in the README.txt file. 

The models and results may be updated during the next months. All information regarding these 

updates will be provided in the “Results” folder. 

Access to models, data, and results is currently restricted to the members of the DRYvER project, and 

will be made publicly available at a later date. Meanwhile, data can be shared with people outside the 

DRYvER project on request.  

https://erdyn.sharepoint.com/:t:/r/sites/DRYvER951/Documents%20partages/WP1%20-%20Hydrological%20trajectories%20of%20DRNs/Results/README.txt?csf=1&web=1&e=EGd3wZ
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Appendix 

A.1 River networks 

 
Figure A1.1: Generated (green) and reference (blue) river networks for the Albarine catchment 
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Figure A1.2: Generated (green) and reference (blue) river networks for the Bukkosdi catchment 
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Figure A1.3: Generated (green) and reference (blue) river networks for the Lepsämänjoki catchment 
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Figure A1.4: Generated (green) and reference (blue) river networks for the Velička catchment 
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Figure A1.5: Generated (green) and reference (blue) river networks for the Butižnica catchment 
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Figure A1.6: Generated (green) and reference (blue) river networks for the Genal catchment
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A.2 HRU Delineation 

 
Figure A2.1: Classes of slope (a), LULC (b), aspect ( c), soil types (d) and hydro-geology (e) were used as inputs and resulted in the final modeling entities (f) used for modeling hydrological 
processes at each Hydrological Response Units as well as aggregated runoff processes at the sub-catchments/ reach level. For Guadiaro this resulted in 9,557 HRUs and 2,825 reaches.  
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A.3 Calibrated parameters 

Table A1: List of the calibrated parameters and the calibration range 

Abbreviation Description Unit Type 

Calibration range 

Ain, Vantaanjoki Fekete 
Guadiaro, Krka, 

Morava 

snow_trans Half width of the transition zone rainfall-snowfall K global 0 - 3.5 

snow_trs 
Threshold temperature for precip phase (the temp. in 
which 50 % of precip fall as snow and 50 % as rain) 

°C global 0 - 3 

t_factor Temperature factor for snow melt mm*°C-1 global 0 - 8 

ccf_factor Cold content factor - global 0.0001 - 0.01 

CropCoef_aAF  Crop coefficient additive adaptation factor  - global -0.2 - 0.2 

CropCoef_mAF  Crop coefficient multiplicative adaptation factor  - global 0.5 - 2 

FCAdaptation  Multiplier for field capacity  - global 0.5 - 5 0.5 - 7 0.5 - 3 

ACAdaptation  Multiplier for air capacity  - global 0 - 3 0 - 3 0.5 - 3 

soilPolRed  Polynomic reduction factor for potential 
evapotranspiration  

- global 0 - 10 

soilMaxInfSnow  Maximum infiltration for snow covered areas  mm global 5 - 200 

soilMaxInfSummer  Maximum infiltration in summer (Apr - Sep)  mm global 5 - 200 

soilMaxInfWinter  Maximum infiltration in winter (Oct - Mar)  mm global 5 - 200 

soilMaxPerc  Maximum percolation rate  mm global 1 - 20 

soilLatVertLPS  LPS lateral-vertical distribution coefficient  - global 0 - 10 

soilOutLPS  LPS outflow coefficient  - global 0 - 10 

SoilConcRD1  Recession coefficient for surface runoff  - global 1 - 5 1 - 10 
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SoilConcRD2  Recession coefficient for interflow  - global 1 - 10 

gwRG1RG2dist  Distribution factor between shallow and deep 
groundwater aquifer  

- global 0 - 10 

flowRouteTA  Flow routing coefficient TA  - global 1 - 20      1 -30 

RG1_max  Maximum storage capacity of the upper ground-water 
reservoir  

mm 
spatially 
distributed 

10 - 300 not calibrated 

RG1_k  Storage coefficient of the upper ground-water 
reservoir  d 

spatially 
distributed 

2 - 30 
0.3 – 3-times of 

physically determined 
parameter 

RG2_max  Maximum storage capacity of the lower ground-water 
reservoir  

mm 
spatially 
distributed 

100 - 1500 100 - 1000 not calibrated 

RG2_k  Storage coefficient of the lower ground-water 
reservoir  d 

spatially 
distributed 

10 - 600 10 - 650 
0.3 – 3-times of 

physically determined 
parameter 
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A.4 Snow calibration 

 

Figure A5: Simulated (red) and observed (blue) snow cover area (fSCA) for the Fekete catchment 
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Figure A6: Simulated (red) and observed (blue) snow cover area (fSCA) for the Krka catchment 
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Figure A7: Simulated (red) and observed (blue) snow cover area (fSCA) for the Morava catchment 
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Figure A8: Simulated (red) and observed (blue) snow cover area (fSCA) for the Vantaanjoki catchment 
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A.5 Hydrogeology 

 
Figure A9: Aquifer types of the six DRNs. The light and dark green areas represent karstified rocks, which play a role in four out of the six basins and account for around 50% and more in the 

Croatian and French catchment    

 


